Using React with the Godot
Game Engine

Also, adding Javascript to your game for good and sometimes
bad reasons

I'm DM!

* | make video games

* | like to make life difficult for myself

I'm DM!

I B CROANELCRITE

* | make video games

difficult for myself

Using React with the Godot
Game Engine

GODOT

Game engine

500

00S! 0001

JUS L

c

(Yes, it’s not Javascript,
we’ll get there)

v O Battle
v % UnderLayer ©
® Sprite2D O,

O InputManager
O PlayerNode

v O EnemyManager
O Enemy1 ©
O Enemy?2 ©

v O Control
v B VBoxContainer
& Label

= Button

<section>
<div>
<h1>Hello World</h1>
<button>Click</button>
</div>
</section>

But we really can just do that
I’ll do an actual demo later, right now I’m just saying you can

Problem: Godot code is written
in C#

Solution: Just add Javascript to
your C#!

O
100%
% Vegetable Juice
1% FROM CONCENTRATE WITH
ﬁ[] ADDED INGREDIENTS

CALORSES f
PERCAN N

7

Add scripting to your .NET applications quickly and easily.

_engine = new V8ScriptEngine();

_engine.AddHostType("GD", typeof(GD)):;

using var file = Godot.FileAccess.0Open(
"res://app/dist/index. js",
Godot.FileAccess.ModeFlags.Read

):

_engine.Execute(file.GetAsText());

Ok great! But how does React
talk to the engine?

It’s actually two
libraries!

e React
e React-DOM

react -> core tools to create components
and manage Ul state

* Built-in components (Fragment, Suspense)
 Hooks (useEffect, useState)

* Functions (memo, forwardRef)

react-dom -> contains components
and methods that can be rendered In
a web DOM view

« HTML components (div, p, Img)
 Hooks (useFormState)

* Functions (I’'m not sure, I’ve never used them)

React -> Data management

React-dom -> lurns state into Ul

This Is called a

renderer!

More renderers!

e React-native
e React-three-fiber
e React-emall

e Redocx

| et’s make a renderer for Godot
Ul elements!

react-godot !!!

Ok great! But how does React
talk to the engine?

react-reconciler

react-reconciler

This is an experimental package for creating custom React renderers.

Its APl is not as stable as that of React, React Native, or React DOM, and does not follow the

common versioning scheme.

Use it at your own risk.

Ok that is way too long to
fit iIn a slide but it’s actually
documented In code

https://www.npmjs.com/package/
@types/react-reconciler

const CustomReconciler = Reconciler({

createlnstance(type, props, root) {

}:
// insert many more functions here

7)

What do we actually need to implement?

. createlnstance(type, props, rootContainer)
. appendChild(parentInstance, child)

- removeChild(parentInstance, child)

- prepareUpdate(instance, type, prevProps,
nextProps)

- commitUpdate(instance, updatePayload, type,
orevProps, nextProps, internalHandle)

Step 1: Create a DOM

public i1nterface IDom

{
oublic Node getNode():

public void updateProps(ScriptObject newProps) ;

public void clearChildren();
public void appendChild(IDom node);
public void removeChild(IDom node);

| €

public partial class DomNode<T> : IDom
where T : Godot.Node, new() {
protected List<IDom> _children;
protected T _instance;

oublic void appendChild(IDom node) {
_children.Add(node):
_instance.AddChild(node.getNode());

}

oublic void removeChild(IDom node) {
_children.Remove(node):
_instance.RemoveChild(node.getNode()):
node.getNode() .QueueFree():

. ¢

Step 2: Create the nodes for the DOM

oublic static IDom createElement(string type,
ScriptObject props, Document rootContainer) {
IDom newNode;
switch (type.ToLower()) {
case "'button":
newNode = new DomNode<Button>():
break;

}
return newNode;
) o

const CustomReconciler = Reconciler({

createlnstance(type: string, props:
ComponentProps<any>, rootContainer?: Document) {
let element: IDom =
Document.createElement(type, props, rootContainer)
return element
'

})

Step 3: Hook it up to the reconciler API

const CustomReconciler = Reconciler(§
appendChild(parentInstance: IDom, child: IDom) {
parentInstance.appendChild(child)
',

removeChild(parentInstance: IDom, child: IDom) {
parentInstance.removeChild(child)
',

- -

Now <putton> will create a
new Button node!

Step 4: Render with the custom reconciler

export const render = (element: any, container:
Document = root) = {
const node = CustomReconciler.createContainer(
container)
CustomReconciler.updateContainer(element, node)

render (<button>Click</button>) .

Ok so it all works now, right?

setTimeout()

A This Is a problem

setTimeout()

 |t’s not part of EMCAScript! It’s a browser API!
o But React relies on it!

e SO we need to make a custom version! In C#!

Oh, all the setTimeout calls are
with a time of 0, so | can just
remove them right?

Nope!

W
hyyyyyyyyyy?!

Time slicing!

What the heck is time slicing?

* Problem: long renders can All

cause the app to feel laggy fr;';z':tfi)sm

second!

Frame: 1000ms

lask: 1000ms

What the heck is time slicing?

e Solution: If a task has taken too long, pause and
create a new frame and continue next frame!

Every frame we

Task still
takes 1

still update Iinput so it
feels snappy

lask: 1000ms

second!

setImmediate()

“This method is used to break up long running operations and run
a callback function immediately after the browser has completed
other operations such as events and display updates.”

|lE and

Node.JS only

cnt Trmmads o LN
— —w= emimmmiiew W LU WG \j

“This method is used to break up long running operations and run
a callback function immediately after the browser has completed
other operations such as events and display updates.”

setTimeout(task, 0)

A Ok but we never actually fixed
the problem???

This Is also a bit too long to fit on
a slide, oops.

But someone wrote a SetTimeout
implementation in the ClearScript issues so |
didn’t have to do it myself: https://github.com/
microsoft/ClearScript/issues/475

let queue = [], nextId = 0, maxId = 10000000GCC0GC
const getNextId = () = (nextId = (nextId % maxId) + 1)
const add = (entry) = {

// add a new entry to the queue
}

function set(periodic, func, delay) {
add({ id, periodic, func, delay, due: now + delay })

// called in C#
impl.Schedule(queue[0].due - now)
return 1d

}
global.setTimeout = set.bind(undefined, false)

public async void Schedule(double delay) {
if (delay < 0) {
if (_token =+ null) {

_token.Cancel();
_token = null;

}
} else if (delay = 0) {
Schedule(_callback()):
} else {
_token 77= new System.Threading.CancellationTokenSource():
try
await Task.Delay((int)delay, _token.Token):
Schedule(_callback()):
} catch (TaskCanceledException) {
GD.Print("we canceled a task!"):
}

. ¢

Ok after all that does it work
now?

“So, DM, did you actually make a
game with all this?”

No!

(Remember what | said about making my life difficult?)

This code i1s 100% not ready for
production

Thank you!

Demo!

...do | even have any time left for this

